avatar proatom

Про атом



подробнее...

Следить за персональным блогом


Автоматизированная система Промышленная безопасность и охрана труда

Обновления главной ленты блогов
Вконтакте Facebook Twitter RSS Почта Livejournal
Внимание

На нашем портале можно бесплатно публиковать информацию о своей компании, размещать товары и услуги и цены на них.
Ведите свой личный или корпоративный блог и его ежедневно увидят 30 тысяч посетителей нашего сайта.

04 августа 2018, 05:10

Пока Россия мечтает о прорыве, атомщики США вынесли ей приговор


Американская корпорация зарегистрировала патент компактного термоядерного реактора

Рафаэль Офек, подполковник, сотрудник Центра BESA

Прогноз Центра BESA No. 909, 29 июля 2018 года Американская корпорация Lockheed Martin, ведущая разработки в сфере передовых технологий, 15 февраля получила патент на революционный дизайн для компактного термоядерного реактора (КТР, Compact Fusion Reactor — CFR). Это мобильное устройство, которое может быть установлено на грузовиках, самолетах и кораблях.

Разработка КТР стартовала в 2010 году в г. Палмдейл, штат Калифорния. Похоже, что проект продвигался быстрее, чем ожидалось ранее, поскольку на момент начала работ руководитель проекта д-р Томас Макгуайер (Dr. Thomas McGuire) заявлял, что задача состояла в том, чтобы получить работающее устройство через пять лет, а расчеты для коммерческого производства реактора — в пределах десяти.

Два прототипа КТР были представлены корпорацией Lockheed Martin 25 декабря 2017 года. Первый — T4B — имеет размеры два метра в длину и один метр в диаметре при весе примерно в 20 тонн. Он способен производить один мегаватт энергии. Второй прототип — TX — достигает 18 метров в длину, семь метров в диаметре и весит примерно 2 000 тонн. Мощность TX — 200 мегаватт. При этом в Lockheed Martin полагают, что вес TX удастся сократить до 200 тонн.

Действие реакторов основано на термоядерном процессе, при котором ядра атомов водорода сливаются и высвобождают огромное количество энергии. Наше солнце, фактически, представляет собой очень мощный термоядерный реактор в котором реакции слияния ядер водорода происходят благодаря чрезвычайно высоким температурам и давлению — в условиях, при которых преодолевается электростатическое отталкивание между протонами внутри этих ядер.

В условиях Земли термоядерная реакция возможна только между дейтерием и тритием, самыми тяжелыми изотопами водорода (D-T fusion). Дейтерий, ядро которого содержит один протон и один нейтрон, весьма распространен на Земле — один его атом приходится на каждые 6 700 атомов воды. К тому же, он стабилен в радиоактивном отношении. А вот тритий, атом которого содержит один протон и два нейтрона, радиоактивен; период его полураспада составляет 12,3 года. На Земле в естественном состоянии тритий найти невозможно, но его можно получить путем облучения лития нейтронами (tritium breeding — воспроизводство трития — С.Д.).

Человечеству удалось обуздать термоядерную реакцию в целях разрушения, когда было создано термоядерное оружие, которое иначе называется водородной бомбой. Водородные бомбы по своей мощности могут в сотни или даже тысячи раз превосходить атомные, подобные тем, которые были сброшены на Японию во время Второй мировой войны, поскольку энергия, высвобождаемая при термоядерной реакции безгранично больше той, что образуется при распаде тяжелых ядер урана или плутония.

Помимо масштабов выделяемой энергии, термоядерный процесс имеет дополнительные преимущества при использовании его в целях производства энергии. Во-первых, дейтерий легко получать путем дистилляции обыкновенной морской воды — неисчерпаемого источника. В этом его отличие от урана, необходимо для реакции деления. Уран значительно менее доступен, и его извлечение довольно сложно. Кроме того, металлический литий также в изобилии встречается и в земных породах, и в морской воде. И наконец, гелий, который получается во время реакции слияния, не радиоактивен — в отличие от радиоактивных отходов, производимых при ядерном делении. Ядерные отходы имеют длительный период жизни и требуют специальных операций по обращению с ними, их утилизации и захоронению.

Процесс перехода от военного применения ядерного деления во время Второй мировой войны к ее использованию в мирных целях был довольно быстрым. Уже в первой половине 1950-х годов реакцию ядерного распада начали использовать для получения электроэнергии. Однако, переход военного использования реакции синтеза к ее гражданскому применению был значительно более медленным. И хотя первые испытания взрывного термоядерного устройства Соединенными Штатами были проведены 1 ноября 1952 года, усилия по обузданию термояда для производства электричества плодов не давали. До настоящего момента.

Недостатка в попытках не было. На протяжении многих лет в исследования, призванные сделать возможным контролируемое высвобождение энергии синтеза, были вложены миллиарды во многих странах мира. Движущий мотив для реализации идеи применения термоядерной реакции в целях производства электроэнергии состоял не только в том, чтобы получить громадное количество энергии, производимой при процессе синтеза, но также и в том, что энергия эта будет чистой — без каких бы то ни было побочных продуктов в виде долгоживущих радиоактивных отходов.

Зачинателями работ в этом направлении в 1950-х годах стали советские физики Игорь Тамм и Андрей Сахаров, которые изобрели тороидальное термоядерное устройство, названное Токамак. Это устройство представляет собой трехмерное концентрическое кольцо, в котором поддерживается очень высокой температуры плазма дейтерия и трития, заключенная в мощных магнитных полях. Первый Токамак вступил в строй в 1958 году, но он до сих пор не настолько зрел, чтобы его можно было использовать в технологических и коммерческих целях.

Те прототипы коммерческих реакторов типа Токамак, которые разрабатывались на Западе, особенно в США, либо производили энергии меньше той, что необходима для разогрева плазмы до желаемой температуры, либо испытывали проблемы со стабильностью. Все они не соответствовали ожиданиям, несмотря на громадные инвестиции. ДЖЭТ (Объединённый европейский токамак​, JET — Joint European Torus), построенный в Британии, по состоянию на конец 2014 года обошелся в пол-миллиарда долларов. TFTR (Tokamak Fusion Test Reactor), построенный в США, стоил неизвестное количество миллиардов долларов. (Проект международного экспериментального термоядерного реактора — С.Д.) ITER (International Thermonuclear Experimental Reactor), построенный во Франции, как ожидается, начнет работать в 2025 году. Общие затраты на ITER оцениваются от 22 до 50 миллиардов долларов. По состоянию на июнь 2015 года в него было вложено 14 миллиардов долларов.

В дополнение к Токамаку были и устройства других дизайнов, основанные на других процессах, цель которых также была заставить термоядерную энергию работать в целях производства электричества. Но все они были безуспешны. В 1980-х годах одна израильская компания изучала возможность строительства термоядерного реактора для целей электрогенерации в пустыне Негев, но проект оказался нереализуемым. (Подробнее — см. д

Источник: http://www.proatom.ru/modules.php?name=News&file=article&sid=8156